European Windows 2019 Hosting BLOG

BLOG about Windows 2019 Hosting and SQL 2019 Hosting - Dedicated to European Windows Hosting Customer

SQL Server Hosting - HostForLIFE :: SQL Server Analytics-Powered Intelligent Inventory Management System

clock December 17, 2025 06:46 by author Peter

One of the most important duties for businesses in the retail, manufacturing, logistics, and e-commerce sectors is inventory management. Too little inventory leads to missed sales, whereas too much inventory raises storage costs. Conventional systems merely monitor reorder levels, purchases, and quantities. However, contemporary firms need something more sophisticated: deeper analytics, automated replenishment, anomaly detection, and forecasting.

These features are offered by a SQL Server Analytics-powered smart inventory management system. Organizations may create intelligent solutions that forecast demand, optimize stock levels, and lower overall operating costs thanks to integrated query performance, machine learning services, sophisticated reporting, and Angular-based dashboards.

This guide explains how to build a complete production-ready, AI-enhanced smart inventory system using:

  • SQL Server (inventory, analytics, ML)
  • ASP.NET Core (API layer)
  • Angular (frontend UI)
  • AI models (forecasting and anomaly detection)
  • Background jobs (automated replenishment)

This article is designed for beginner, intermediate, and senior developers.

1. Understanding Smart Inventory Management
A smart inventory system goes beyond storing stock count. It uses analytics and AI to support business decisions.

Key Features

  • Real-time inventory tracking
  • Automatic reorder suggestions
  • Demand forecasting
  • Low-stock alerts
  • Supplier performance analysis
  • ABC classification
  • Expiry and batch tracking
  • Sales velocity analytics
  • Safety stock calculation
  • Dashboard visualizations

Traditional systems offer CRUD operations. Smart systems offer insights.

2. High-Level Architecture
Here is the recommended architecture for a robust smart inventory solution:
Angular UI
    ↓
ASP.NET Core REST API
    ↓
SQL Server (Inventory, Analytics, ML Models)
    ↓
Python/R ML Scripts (Forecasting)
    ↓
Background Services (alerts, reorder engine)

Each component has a specific responsibility:

  • Angular: dashboards, charts, tables, alerts, user operations
  • ASP.NET Core: APIs for stock, suppliers, forecasting, notifications
  • SQL Server: stores stock data, purchase history, demand patterns, model outputs
  • Machine Learning Services: forecasting models (Python/R)
  • Background Jobs: periodic analytics refresh, reorder suggestions, threshold monitoring

3. Designing the Inventory Database
SQL Server stores inventory, sales, supplier data, and forecast results.

3.1 Items Table

CREATE TABLE Items (
    ItemId INT IDENTITY PRIMARY KEY,
    ItemName NVARCHAR(200),
    SKU NVARCHAR(100),
    Category NVARCHAR(100),
    SupplierId INT,
    ReorderLevel INT,
    SafetyStock INT,
    UnitPrice DECIMAL(18,2)
);

3.2 Stock Table
CREATE TABLE Stock (
    StockId INT IDENTITY PRIMARY KEY,
    ItemId INT,
    Quantity INT,
    LastUpdated DATETIME DEFAULT GETDATE()
);

3.3 Sales History Table
CREATE TABLE SalesHistory (
    SaleId INT IDENTITY PRIMARY KEY,
    ItemId INT,
    QuantitySold INT,
    SaleDate DATE
);

3.4 Forecast Results
CREATE TABLE ForecastedDemand (
    ForecastId INT IDENTITY PRIMARY KEY,
    ItemId INT,
    ForecastMonth DATE,
    ForecastQuantity INT
);

3.5 Reorder Suggestions
CREATE TABLE SuggestedOrders (
    SuggestionId INT IDENTITY PRIMARY KEY,
    ItemId INT,
    SuggestedQuantity INT,
    GeneratedAt DATETIME DEFAULT GETDATE()
);


4. Using SQL Server Analytics for Demand Forecasting
SQL Server Machine Learning Services lets you run Python or R forecasting directly inside stored procedures. This avoids exporting data to external systems.

Example: Monthly Demand Forecast Using Python
EXEC sp_execute_external_script
  @language = N'Python',
  @script = N'
import pandas as pd
from statsmodels.tsa.holtwinters import ExponentialSmoothing

df = InputDataSet
df["SaleDate"] = pd.to_datetime(df["SaleDate"])
df = df.resample("M", on="SaleDate").sum()

model = ExponentialSmoothing(df["QuantitySold"], trend="add", seasonal="add", seasonal_periods=12)
fit = model.fit()

forecast = fit.forecast(3)  # next 3 months

OutputDataSet = forecast.reset_index()
',
  @input_data_1 = N'SELECT SaleDate, QuantitySold FROM SalesHistory WHERE ItemId = 101'
WITH RESULT SETS ((ForecastMonth DATE, ForecastQuantity FLOAT));


Insert results into ForecastedDemand:
INSERT INTO ForecastedDemand(ItemId, ForecastMonth, ForecastQuantity)
EXEC ForecastStoredProcedure @ItemId = 101;


5. Building ASP.NET Core API Layer
ASP.NET Core exposes inventory data and forecast analytics to Angular.

5.1 Get Current Stock
[HttpGet("stock")]
public async Task<IActionResult> GetStock()
{
    var items = await _context.Stock
        .Include(x => x.Item)
        .Select(x => new {
            x.Item.ItemName,
            x.Quantity,
            x.Item.ReorderLevel,
            x.Item.SafetyStock
        })
        .ToListAsync();

    return Ok(items);
}

5.2 Get Forecast Results
[HttpGet("forecast/{itemId}")]
public async Task<IActionResult> GetForecast(int itemId)
{
    var result = await _context.ForecastedDemand
        .Where(x => x.ItemId == itemId)
        .OrderBy(x => x.ForecastMonth)
        .ToListAsync();

    return Ok(result);
}

5.3 Generate Reorder Suggestions
[HttpPost("suggest-reorder")]
public async Task<IActionResult> GenerateReorders()
{
    var items = await _context.Items.ToListAsync();
    var stock = await _context.Stock.ToListAsync();

    foreach(var item in items)
    {
        var qty = stock.First(s => s.ItemId == item.ItemId).Quantity;

        if(qty < item.ReorderLevel)
        {
            var suggestedQty = (item.ReorderLevel + item.SafetyStock) - qty;

            _context.SuggestedOrders.Add(new SuggestedOrder
            {
                ItemId = item.ItemId,
                SuggestedQuantity = suggestedQty
            });
        }
    }

    await _context.SaveChangesAsync();
    return Ok();
}


6. Angular Application Structure

Angular gives stock dashboards, charts, and alert screen.

Recommended modules:

  • DashboardModule
  • InventoryModule
  • SalesModule
  • ForecastModule
  • AlertsModule

Install Charts
npm install chart.js ngx-charts

7. Angular Service for Inventory API
inventory.service.ts
@Injectable({ providedIn: 'root' })
export class InventoryService {
  constructor(private http: HttpClient) {}

  getStock(): Observable<StockItem[]> {
    return this.http.get<StockItem[]>('/api/inventory/stock');
  }

  getForecast(id: number): Observable<Forecast[]> {
    return this.http.get<Forecast[]>(`/api/inventory/forecast/${id}`);
  }
}


export interface StockItem {
  itemName: string;
  quantity: number;
  reorderLevel: number;
  safetyStock: number;
}

export interface Forecast {
  forecastMonth: string;
  forecastQuantity: number;
}

8. Building Angular Dashboard
Stock Overview Component
stock-overview.component.ts

@Component({
  selector: 'app-stock-overview',
  templateUrl: './stock-overview.component.html'
})
export class StockOverviewComponent implements OnInit {

  displayedColumns = ['itemName','quantity','reorderLevel','safetyStock'];
  dataSource = new MatTableDataSource<StockItem>();

  constructor(private inventory: InventoryService) {}

  ngOnInit() {
    this.inventory.getStock().subscribe(res => {
      this.dataSource.data = res;
    });
  }
}


HTML:
<mat-card>
  <h2>Current Stock</h2>

  <table mat-table [dataSource]="dataSource" class="mat-elevation-z8">

    <ng-container matColumnDef="itemName">
      <th mat-header-cell *matHeaderCellDef> Item </th>
      <td mat-cell *matCellDef="let row">{{ row.itemName }}</td>
    </ng-container>

    <ng-container matColumnDef="quantity">
      <th mat-header-cell *matHeaderCellDef> Stock </th>
      <td mat-cell *matCellDef="let row">{{ row.quantity }}</td>
    </ng-container>

    <ng-container matColumnDef="reorderLevel">
      <th mat-header-cell *matHeaderCellDef> Reorder Level </th>
      <td mat-cell *matCellDef="let row">{{ row.reorderLevel }}</td>
    </ng-container>

    <ng-container matColumnDef="safetyStock">
      <th mat-header-cell *matHeaderCellDef> Safety Stock </th>
      <td mat-cell *matCellDef="let row">{{ row.safetyStock }}</td>
    </ng-container>

    <tr mat-header-row *matHeaderRowDef="displayedColumns"></tr>
    <tr mat-row *matRowDef="let row; columns: displayedColumns"></tr>

  </table>
</mat-card>


9. Forecast Chart in Angular
forecast-chart.component.ts

@Component({
  selector: 'app-forecast-chart',
  templateUrl: './forecast-chart.component.html'
})
export class ForecastChartComponent implements OnInit {

  lineChartData = [];
  lineChartLabels = [];

  constructor(private inventory: InventoryService) {}

  ngOnInit() {
    this.inventory.getForecast(101).subscribe(res => {
      this.lineChartLabels = res.map(r => r.forecastMonth);
      this.lineChartData = [
        {
          data: res.map(r => r.forecastQuantity),
          label: 'Forecasted Demand'
        }
      ];
    });
  }
}

HTML:
<mat-card>
  <h2>Demand Forecast</h2>

  <canvas baseChart
          [datasets]="lineChartData"
          [labels]="lineChartLabels"
          chartType="line">
  </canvas>
</mat-card>


10. Automated Reorder Engine

A background job (Hangfire or Quartz.NET) can run nightly:
Example Scheduled Job
public class ReorderJob
{
    private readonly InventoryService _service;

    public ReorderJob(InventoryService service)
    {
        _service = service;
    }

    public async Task Execute()
    {
        await _service.GenerateReorderSuggestions();
    }
}


Register with Hangfire:
RecurringJob.AddOrUpdate<ReorderJob>(
    "auto-reorder",
    job => job.Execute(),
    Cron.Daily);


11. Alerts and Notifications
Based on stock thresholds or forecasts, send alerts:

SQL trigger-based alerts
IF EXISTS (SELECT * FROM Stock WHERE Quantity < ReorderLevel)
INSERT INTO Alerts(ItemId, Message) VALUES (@ItemId, 'Low Stock');


Angular Alerts Screen

Use Material Snackbar or Notification Panel to display alerts.

12. Performance Analytics
A smart system must analyze:

  • Inventory turnover rate
  • Slow-moving items
  • Fast-moving items
  • Supplier lead time trends
  • Stock aging reports
  • Purchase frequency

Example SQL for turnover:
SELECT ItemId,
       SUM(QuantitySold) / SUM(Quantity) AS TurnoverRate
FROM SalesHistory
JOIN Stock ON SalesHistory.ItemId = Stock.ItemId
GROUP BY SalesHistory.ItemId;

Angular visuals can show:

  • Doughnut charts
  • Column charts
  • Line graphs

13. AI Enhancements
13.1 Predictive Restocking
Use forecasting + safety stock.

13.2 Anomaly Detection
Detect unusual sales patterns.

13.3 Price Optimization

Suggest ideal selling price.

13.4 Stock-Out Prediction
Forecast when stock will reach zero.

13.5 Supplier Analytics
Predict late deliveries.

14. Security Best Practices
Secure API with JWT

  • Use stored procedures to avoid SQL injection
  • Encrypt sensitive data
  • Implement row-level security if multi-tenant
  • Use HTTPS for Angular app and API

15. Deployment Strategy
Recommended Setup

  • SQL Server: Azure SQL or VM
  • ASP.NET Core: Azure App Service
  • Angular: Azure Static Web App or Blob Storage website
  • ML Services: Azure Container Apps or SQL ML Services
  • Background jobs: Azure Functions or Hangfire

HostForLIFE.eu SQL Server 2022 Hosting
HostForLIFE.eu is European Windows Hosting Provider which focuses on Windows Platform only. We deliver on-demand hosting solutions including Shared hosting, Reseller Hosting, Cloud Hosting, Dedicated Servers, and IT as a Service for companies of all sizes.

 



European SQL Server 2022 Hosting - HostForLIFE :: SMTP Configuration Guide and SQL Server Database Mail Setup

clock December 9, 2025 09:26 by author Peter

When it comes to configuring SQL Server Database Mail, this article is ideal for novices. Additionally, it can be utilized in documentation or training sessions for novice developers.

Verify the Current SQL Server SMTP Configuration

Goals
to confirm whether SQL Server Database Mail has any SMTP profiles set up.

USE msdb;
GO
SELECT * FROM dbo.sysmail_profile;

Create a New Database Mail Profile
Purpose
To create a new Database Mail profile in SQL Server that can be used to send emails via SMTP accounts.

Query
EXEC msdb.dbo.sysmail_add_profile_sp
    @profile_name = 'MailCampaign',
    @description = 'Profile for sending SQL Server emails';


Explanation of Parameters

@profile_name = 'MailCampaign'

    This is the name of your Database Mail profile.

    A profile is like a container for SMTP accounts that SQL Server will use to send emails.

    In your query, 'MailCampaign' is the name you chose for the profile.

    You can change this to any name you want, for example: 'SQLMailer', 'AdminMail', etc.

@description = 'Profile for sending SQL Server emails'

    Optional text describing the purpose of this profile.

    Helps to identify the profile later if you have multiple profiles.

Create SMTP Configuration for Database Mail
Purpose
To configure an SMTP account in SQL Server that will be used by a Database Mail profile to send emails.

Query
EXEC msdb.dbo.sysmail_add_account_sp
    @account_name = 'Mail Campaign',
    @description = 'SMTP account for MailCampaign',
    @email_address = '[email protected]', -- Your email Id
    @display_name = 'NoReply',                   -- Your display name in email
    @replyto_address = '[email protected]', -- Reply-to email Id
    @mailserver_name = 'smtp.sendgrid.net',      -- SMTP server
    @port = 587,                                 -- SMTP port (587 for TLS/STARTTLS)
    @username = 'apikey',                        -- SMTP username (SendGrid uses 'apikey')
    @password = 'SUCXUo5r3uCBZdlw',             -- SMTP password or API key
    @enable_ssl = 0;                             -- Enable SSL/TLS (1 = Yes, 0 = No)


Next Step: Map Account to Profile

After creating the SMTP account, you need to associate it with your Database Mail profile:

Query

EXEC msdb.dbo.sysmail_add_profileaccount_sp
    @profile_name = 'MailCampaign',
    @account_name = 'Mail Campaign',
    @sequence_number = 1;


Send a Test Email
Purpose
To verify that the SMTP configuration and Database Mail profile are working correctly by sending a test email.

Query
EXEC msdb.dbo.sp_send_dbmail
    @profile_name = 'MailCampaign',
    @recipients = '[email protected]',
    @subject = 'Test Email',
    @body = 'Database Mail is now configured correctly!';


SQL Server Database Mail Setup Script
USE msdb;
GO
SELECT *
FROM dbo.sysmail_profile;
--Step 1:
EXEC msdb.dbo.sysmail_add_profile_sp
    @profile_name = 'MailCampaign',
    @description = 'Profile for sending SQL Server emails';
--Step 2:
EXEC msdb.dbo.sysmail_add_account_sp
    @account_name = 'Mail Campaign',
    @description = 'SMTP account for MailCampaign',
    @email_address = '[email protected]', -- Your email Id
    @display_name = 'NoReply',                   -- Your display name in email
    @replyto_address = '[email protected]', -- Reply-to email Id
    @mailserver_name = 'smtp.sendgrid.net',      -- SMTP server
    @port = 587,                                 -- SMTP port (587 for TLS/STARTTLS)
    @username = 'apikey',                        -- SMTP username (SendGrid uses 'apikey')
    @password = 'SUCXUo5r3uCBZdlw',             -- SMTP password or API key
    @enable_ssl = 1;                             -- Enable SSL/TLS (1 = Yes, 0 = No)
--Step 3:
EXEC msdb.dbo.sysmail_add_profileaccount_sp
    @profile_name = 'MailCampaign',
    @account_name = 'Mail Campaign',
    @sequence_number = 1;
--or
EXEC msdb.dbo.sysmail_add_principalprofile_sp
    @profile_name = 'MailCampaign',
    @principal_name = 'public',
    @is_default = 1;
--Step 4:
EXEC msdb.dbo.sp_send_dbmail
    @profile_name = 'MailCampaign',
    @recipients = '[email protected]',
    @subject = 'Test Email',
    @body = 'Database Mail is now configured correctly!';
SELECT * FROM msdb.dbo.sysmail_event_log ORDER BY log_date DESC;
--Your Reference Script
SELECT * FROM msdb.dbo.sysmail_account;
SELECT * FROM msdb.dbo.sysmail_profile;
SELECT * FROM msdb.dbo.sysmail_profileaccount;
SELECT * FROM msdb.dbo.sysmail_event_log ORDER BY log_date DESC;


Explanation
1. Step 0: Check if any Database Mail profiles already exist.
2. Step 1: Creates a new profile (MailCampaign) for sending emails.
3. Step 2: Adds an SMTP account linked to the profile (using SendGrid example).
4. Step 3: Maps the SMTP account to the profile and optionally sets it as the default for all users.
5. Step 4: Sends a test email to verify the configuration.
6. Step 5: Checks the event log and reference tables to troubleshoot or confirm successful setup.

HostForLIFEASP.NET SQL Server 2022 Hosting

 



European SQL Server 2022 Hosting :: How to Lower Lock Contention in Financial Ledger Tables in SQL Server?

clock December 5, 2025 07:34 by author Peter

Financial ledger tables are some of the most heavily accessed structures in enterprise systems. They store critical accounting events such as journal entries, postings, adjustments, settlements, accruals, and reversals. These tables often experience very high write concurrency, especially in:

  • ERP posting engines
  • High-volume billing systems
  • Payment gateways
  • Reconciliation services
  • End-of-day and batch processing jobs

As concurrency increases, SQL Server frequently faces lock contention, leading to:

  • Long-running transactions
  • Deadlocks
  • Slow inserts/updates
  • Users experiencing blocking
  • Increased TempDB usage
  • Timeouts in APIs or stored procedures

This article explains why ledger tables suffer from lock contention, and provides practical, implementable techniques to reduce blocking, improve throughput, and increase system stability.

Why Financial Ledger Tables Face High Lock Contention?

1. Constant Writes
Ledger tables often record every financial event.
Even medium systems may generate:

  • 50–200 records per user action
  • Thousands of rows per batch job
  • Millions of rows per day

Continuous writes cause frequent locks.

2. Wide Rows With Many Columns
Ledger rows often contain:

  • CompanyId
  • AccountId
  • Debit/Credit
  • Amount
  • Currency
  • ReferenceId
  • Audit columns

Wide rows increase the cost of locking and reduce throughput.

3. Heavy Use Of Aggregates
Financial reporting queries run concurrently with postings:
SELECT AccountId, SUM(Debit) - SUM(Credit)
FROM Ledger
WHERE AccountingPeriod = '2025-01'
GROUP BY AccountId;


Such queries escalate to locking large ranges of rows.

4. Range Locks Due To Non-Optimized Indexing

If AccountId or PostingDate is not properly indexed, SQL Server uses:

  • Table scans
  • Key-range locks
  • Intent locks

These escalate quickly under concurrency.

5. Long Transactions
Posting operations often perform multiple validations and write across several tables.

  • Long transactions hold locks longer, increasing blocking.
  • Lock Contention Symptoms In Ledger Tables

Common Issues

  • Blocking chains
  • Deadlocks involving ledger rows
  • LCK_M_S, LCK_M_U, LCK_M_X waits
  • WRITELOG and PAGELATCH waits
  • API timeouts during accounting operations
  • Transaction log growth due to long-running transactions

Typical Indicators
SELECT * FROM sys.dm_tran_locks
WHERE resource_associated_entity_id = OBJECT_ID('Ledger');

SELECT * FROM sys.dm_os_waiting_tasks
WHERE wait_type LIKE 'LCK%';

High frequency of these waits confirms contention.

Technique 1: Use Appropriate Isolation Levels
Default Behavior
Most systems run in READ COMMITTED, causing shared locks during reads.

Recommended
Enable READ_COMMITTED_SNAPSHOT (RCSI):
ALTER DATABASE FinanceDB SET READ_COMMITTED_SNAPSHOT ON;

Benefits:

  • Readers do not block writers
  • Writers do not block readers
  • Ledger reporting queries become non-blocking

This single change can reduce contention by 70–90%.

When To Use Snapshot Isolation?

If high consistency is needed for accounting operations:
ALTER DATABASE FinanceDB SET ALLOW_SNAPSHOT_ISOLATION ON;

Then in code:
SET TRANSACTION ISOLATION LEVEL SNAPSHOT;

Use it for:

  • Posting engines
  • Settlement jobs
  • Reconciliation processes

Technique 2: Narrow The Update Scope

Problem
Some ledger updates touch many rows at once:
UPDATE Ledger
SET IsReconciled = 1
WHERE AccountId = @Acct AND PostingDate = @Date;

This creates:

  • Key-range locks
  • Long blocking spans
  • Update lock escalations

Solution
Break the update into small batches:
WHILE 1=1
BEGIN
    WITH cte AS (
        SELECT TOP (500) LedgerId
        FROM Ledger
        WHERE AccountId = @Acct
          AND PostingDate = @Date
          AND IsReconciled = 0
    )
    UPDATE cte SET IsReconciled = 1;

    IF @@ROWCOUNT < 500 BREAK;
END


Benefits:

  • Smaller locks
  • Faster release of resources
  • Lower deadlock probability

Technique 3: Use Optimized Indexing To Reduce Range Locks
Bad Indexing Pattern
Ledger tables often have an index like:
CREATE INDEX IX_Ledger_AccountId ON Ledger(AccountId);

Missing PostingDate or JournalEntryId forces range locks.

Recommended Covering Index
CREATE INDEX IX_Ledger_Account_Date
ON Ledger(AccountId, PostingDate)
INCLUDE (Debit, Credit, Amount);


Why this helps:

  • Converts table scans into seeks
  • Reduces lock footprints
  • Prevents range locks from escalating

Partitioning Bonus
If table is huge (hundreds of millions):

Partition by PostingDate:
PARTITION BY RANGE (PostingDate)
This physically separates ledger rows, reducing lock footprint even further.

Technique 4: Use Insert-Only Patterns (Immutable Ledger Design)
The best ledger models treat entries as immutable:

  • No UPDATE
  • No DELETE
  • Only INSERT

Benefits:

  • No update locks
  • No deadlocks on row modifications
  • Append-only architecture scales extremely well

Example: Instead Of Updating Balances

Bad:
UPDATE AccountBalance
SET ClosingBalance = ClosingBalance + @Amt
WHERE AccountId = @Acct;


Good:
INSERT INTO AccountBalanceHistory(AccountId, AmountChange, Timestamp)
VALUES (@Acct, @Amt, GETUTCDATE());


Then compute balances in reporting layer or via materialized views.

This pattern removes 90% of lock contention.

Technique 5: Reduce Transaction Length
Problem
Posting operations often run like this:
BEGIN TRAN;

-- validations
-- external API call
-- logging
-- balance adjustment
-- final insert

COMMIT;

Long-running external calls hold locks for seconds.

Solution
Move non-critical logic outside the transaction:
BEGIN TRAN;

-- minimal required operations
INSERT INTO Ledger(...)
INSERT INTO Journal(...)

COMMIT;

-- post-commit logging
-- send notification
-- update cache
-- call external APIs


This shortens lock durations drastically.

Technique 6: Use Row-Versioning To Reduce Write Contention
Add a RowVersion column

ALTER TABLE Ledger
ADD RowVer ROWVERSION;

Use optimistic concurrency:

UPDATE Ledger
SET Amount = @Amt
WHERE LedgerId = @Id AND RowVer = @OldVersion;


If the row changed, SQL Server returns 0 rows.
Client retries instead of blocking.

Technique 7: Move Operational Queries To Replica
If you use Availability Groups:
Primary = Accept writes
Secondary replicas = Handle reads


Reporting queries such as:
SELECT * FROM Ledger WHERE PostingDate BETWEEN ...

should be routed to replicas, not the primary.

This removes all read locks on the primary ledger.

Technique 8: Use Scalable Posting Patterns
Pattern 1: FIFO Posting Queue
Producer pushes journal requests to a queue:

  • Service Bus
  • Kafka
  • SQL Queue table

Consumer processes in controlled batches, reducing contention.

Pattern 2: Micro-batches
Process ledger writes in slices:
BatchSize = 1000

Best for high-traffic financial systems.

Pattern 3: Sharded Ledger Tables

Split ledger by:

  • Company
  • Account range
  • Region

This allows parallelism and reduces hot rows.

End-To-End Example: Optimizing Journal Posting

Original (High Contention)

BEGIN TRAN

INSERT INTO Ledger(AccountId, Debit, Credit, PostingDate)
VALUES (@Account, @Debit, @Credit, @Date)

UPDATE AccountBalance
SET Balance = Balance + @NetAmount
WHERE AccountId = @Account

COMMIT


Optimized

  • Use RCSI
  • Insert-only pattern
  • Batch account balance updates

BEGIN TRAN

INSERT INTO Ledger(AccountId, Debit, Credit, PostingDate)
VALUES (@Account, @Debit, @Credit, @Date)

INSERT INTO BalanceDelta(AccountId, AmountChange)
VALUES (@Account, @NetAmount)

COMMIT


A background worker aggregates BalanceDelta periodically:
UPDATE AccountBalance
SET Balance = Balance + d.AmountChange
FROM BalanceDelta d
WHERE AccountBalance.AccountId = d.AccountId

DELETE BalanceDelta WHERE Processed = 1;


This eliminates hot rows and reduces contention dramatically.
Diagram: Ledger Lock Contention vs Optimized Architecture

Before Optimization

Client Requests → Ledger Table (Hotspot)
                  ↑       ↓
                Updates  Aggregates
                  ↑       ↓
               Blocking / Deadlocks


After Optimization
Client → Ledger (Insert-Only) → Processed Quickly
Client → BalanceDelta → Background Worker → AccountBalance (Low Contention)
Reports → Secondary Replica (No Locks On Primary)


This architecture is used by modern ERP and billing systems.

Conclusion

Financial ledger tables face extreme lock contention because of:

  • High write concurrency
  • Frequent aggregates
  • Wide rows
  • Bad indexing
  • Long transactions

By applying the techniques in this guide, RCSI, batching, optimized indexing, insert-only design, optimistic concurrency, posting queues, and replicas, you can reduce contention by 80–95%, enabling smooth and scalable financial operations.

HostForLIFEASP.NET SQL Server 2022 Hosting



About HostForLIFE

HostForLIFE is European Windows Hosting Provider which focuses on Windows Platform only. We deliver on-demand hosting solutions including Shared hosting, Reseller Hosting, Cloud Hosting, Dedicated Servers, and IT as a Service for companies of all sizes.

We have offered the latest Windows 2019 Hosting, ASP.NET 5 Hosting, ASP.NET MVC 6 Hosting and SQL 2019 Hosting.


Month List

Tag cloud

Sign in