European Windows 2019 Hosting BLOG

BLOG about Windows 2019 Hosting and SQL 2019 Hosting - Dedicated to European Windows Hosting Customer

European SQL Server 2022 Hosting :: How Can I Find Blocked Deadlocks in SQL?

clock February 23, 2024 06:20 by author Peter

SQL Query
SELECT
    r.blocking_session_id AS BlockingSessionID,
    DB_NAME(r.database_id) AS DatabaseName,
    --OBJECT_NAME(object_id, r.database_id) AS BlockedObjectName,
    --OBJECT_SCHEMA_NAME(object_id, r.database_id) AS BlockedObjectSchema,
    r.database_id AS BlockedObjectName,
    r.database_id AS BlockedObjectSchema,
    st.text AS BlockedSQLText,
    r.blocking_session_id AS BlockedBySessionID,
    r.command AS BlockingCommand,
    CASE WHEN r.transaction_id IS NULL THEN 'Not In Transaction' ELSE 'In Transaction' END AS BlockingInTransaction,
    es.login_name AS BlockedUser,
    er.blocking_session_id AS BlockingSessionID,
    es.host_name AS BlockingHostName,
    es.program_name AS BlockingProgram,
    er.start_time AS BlockingStartTime
FROM
    sys.dm_exec_requests AS r
JOIN
    sys.dm_exec_sessions AS es ON r.session_id = es.session_id
JOIN
    sys.dm_exec_connections AS ec ON es.session_id = ec.session_id
JOIN
    sys.dm_exec_requests AS er ON ec.most_recent_session_id = er.session_id
CROSS APPLY
    sys.dm_exec_sql_text(r.sql_handle) AS st
WHERE
    r.session_id != @@SPID
    AND r.blocking_session_id != 0
ORDER BY
    r.blocking_session_id;

Let's talk about this table definition and how it will assist us make this query.

sys.dm_exec_requestspan

sys.dm_exec_requests is not a table in the traditional sense; rather, it's a Dynamic Management View (DMV) provided by Microsoft SQL Server.

  • It is a useful tool for database administrators and developers to monitor and manage the current requests or sessions on the SQL Server instance.
  • This dynamic management view is particularly useful for monitoring and debugging database performance, recognizing long-running queries, discovering blocking issues, and determining server resource use. It provides significant insights into the present activity on the SQL Server instance, helping database administrators and developers to manage and modify database processes efficiently.

Overall, sys.dm_exec_requests is an essential tool for real-time performance monitoring and troubleshooting in SQL Server. It enables database administrators and developers to monitor server activity and take proactive steps to improve performance and stability.

sys.dm_exec_sessions
sys.dm_exec_sessions is another Dynamic Management View (DMV) offered by Microsoft SQL Server.

It contains information about all active sessions on the SQL Server instance, including user sessions, system sessions, and internal background processes.
The goal of sys.dm_exec_sessions is to offer a full picture of the current sessions connected to the SQL Server instance, as well as the many attributes and features associated with each. Here's how the DMV can be useful.

Overall, sys.dm_exec_sessions is a useful tool for monitoring and managing SQL Server sessions. Querying this DMV provides admins with insights into session activity, resource use, blocking circumstances, and transactional behavior, allowing them to efficiently optimize server performance and handle issues.

sys.dm_exec_connections
Microsoft SQL Server has a Dynamic Management View (DMV) called sys.dm_exec_connections.

It holds information on the current connections to the SQL Server instance, such as client connections, protocols, and network address.

The purpose of sys. dm_exec_connections is to give administrators and developers with information about the active connections to SQL Server instances.
Overall, sys.dm_exec_connections is an effective tool for monitoring and controlling client connections to SQL Server instances. Querying this DMV provides administrators with insights on connection attributes, network protocols, resource use, and session associations, allowing them to effectively diagnose connectivity issues and enhance server performance.

sys.dm_exec_sql_text
sys.dm_exec_sql_text is a Dynamic Management Function (DMF) that Microsoft SQL Server provides. It retrieves the text of SQL statements that are presently being executed or have been executed recently. This feature is especially useful for monitoring and troubleshooting purposes.

Overall, sys.dm_exec_sql_text is an effective monitoring and troubleshooting tool for SQL Server instances. It gives information about the SQL statements that are being executed, allowing administrators to identify performance issues, optimize queries, and assure the database's security and reliability.

Attention

Dynamic management views (DMVs) and dynamic management functions (DMFs) provide server state information that can be used to monitor a server instance's health, identify problems, and optimize performance.

Deadlock Monitor 

Dynamic Management View/Function Description Usage in Finding Deadlocks
sys.dm_exec_requests Provides information about each request that is currently executing or waiting for execution in SQL Server. Can be used to identify blocking and deadlock scenarios by analyzing the blocking_session_id column to find the sessions involved in the deadlock chain.
sys.dm_exec_sessions Returns one row per authenticated session on SQL Server. It includes information such as session ID, login name, hostname, and program name. Useful for obtaining details about the sessions involved in the deadlock, such as login name and hostname, to identify the users or applications causing the deadlock.
sys.dm_exec_connections Provides information about the connections established to SQL Server, including details such as session ID and client IP address. Helpful for identifying the client connections associated with the sessions involved in the deadlock, aiding in troubleshooting, and identifying the source of the deadlock.
sys.dm_exec_sql_text Returns the text of the SQL statements that are currently being executed or have been executed recently. It takes an SQL handle as input. Can be used to retrieve the SQL text of the queries involved in the deadlock chain, enabling administrators to analyze the queries causing the deadlock and take appropriate actions to resolve it.

HostForLIFEASP.NET SQL Server 2022 Hosting


 



European SQL Server 2022 Hosting :: Mastering T-SQL Rank Functions

clock February 7, 2024 07:31 by author Peter

SQL window functions are strong instruments for complex data manipulation and analysis. The four primary window functions in T-SQL are ROW_NUMBER, RANK, DENSE_RANK, and NTILE. Within result sets, these functions aid in ranking, sorting, and organizing data. Let's examine each function in more detail, learning about its purpose and practical applications.

To comprehend the ideas, let's look at the table below.

CREATE TABLE StudentMarks (
    StudentID INT,
    Subject VARCHAR(50),
    Marks INT
);

Adding a few sample records in the above table.

Student ID Subject Marks
1 Mathematics 90
2 Science 85
3 History 75
4 Mathematics 90

1. ROW_NUMBER

A window function called ROW_NUMBER uses the given ordering to assign a distinct sequential number to each row inside a partition of a result set. It starts at 1 and generates a new number for every row, without any pauses.

Use Cases: ROW_NUMBER is frequently used to filter the top N rows in a partition, discover duplicates, and create pagination.

Example

SELECT *,
       ROW_NUMBER() OVER (ORDER BY Marks DESC) AS RowNumber
FROM StudentMarks;


It will return the output.

2. RANK

StudentID Subject Marks RowNumber
4 Mathematics 90 1
1 Mathematics 90 2
2 Science 85 3
3 History 75 4

Another window method called RANK uses a given ordering to give each row inside a partition of a result set a distinct rank. When gaps occur in the ranking sequence, it leaves them there and gives the same rank to rows with equal values.

Use Cases: When ranking is permitted to have ties, like in the case of rating students based on exam results, RANK is frequently employed.

Another window method called RANK uses a given ordering to give each row inside a partition of a result set a distinct rank. When gaps occur in the ranking sequence, it leaves them there and gives the same rank to rows with equal values.

Use Cases: RANK is often used when ranking is allowed to contain ties, such as when grading students according to exam scores.

Example:

SELECT *,
       RANK() OVER (ORDER BY Marks DESC) AS Rank
FROM StudentMarks;

It will return the output.

StudentID Subject Marks Rank
4 mathematics 90 1
1 Mathematics 90 1
2 Science 85 3
3 History 75 4

3. DENSE_RANK
DENSE_RANK is similar to RANK but differs in that it assigns consecutive ranks to rows with equal values, without leaving gaps in the ranking sequence. It ensures that ranks are assigned in a continuous, sequential manner.

Use Cases: DENSE_RANK is preferred when consecutive ranking without gaps is desired, such as ranking products by sales performance.

Example
SELECT *,
       DENSE_RANK() OVER (ORDER BY Marks DESC) AS DenseRank
FROM StudentMarks;

It will return the output.

StudentID Subject Marks DenseRank
4 Mathematics 90 1
1 Mathematics 90 1
2 Science 85 2
3 History 75 3

4. NTILE
NTILE is a window function that divides the result set into a specified number of roughly equal-sized buckets or partitions, assigning each row to one of these buckets. The function ensures that the size difference between buckets is minimized.

Use Cases: NTILE is commonly used for data segmentation and percentile calculations, such as dividing customers into groups based on their income.

Example
SELECT *,
       NTILE(4) OVER (PARTITION BY SUBJECT ORDER BY Marks DESC) AS Student_Group
FROM StudentMarks;

It will return the output.
studentID   Subject

It will return the output.

studentID Subject Marks Student_Group
4 Mathematics 90 1
1 Mathematics 90 2
2 Science 85 1
3 History 75 1

In summary
With SQL Server, window functions like ROW_NUMBER, RANK, DENSE_RANK, and NTILE give analysts and developers strong capabilities for data analysis, ranking, and partitioning. Through the appropriate utilization of these functionalities, users can accomplish intricate analytical tasks, acquire a deeper understanding of their data, and retrieve important information from their databases. By being aware of the subtleties and functionalities of each window function, SQL practitioners can fully utilize T-SQL for complex data manipulation and analysis activities.

HostForLIFEASP.NET SQL Server 2022 Hosting

 



European SQL Server 2022 Hosting :: Enhance the Performance of SQL Databases

clock February 2, 2024 07:30 by author Peter

In the dynamic realm of database management, making sure that SQL performance is optimized is essential to the smooth and effective operation of applications. Delivering a responsive and scalable application depends heavily on performance optimization, regardless of the size of the database or the system in question. We'll look at important tactics and industry best practices for SQL database performance optimization in this post.

1. Recognizing Performance Optimization's Significance
Providing a seamless user experience requires good database performance. Application responsiveness and scalability may be impacted by bottlenecks caused by slow queries and wasteful database design. SQL database efficiency can be greatly increased by developers by devoting work to performance enhancement.

2. Determining Performance Bottlenecks via Profiling

Finding performance constraints is essential before implementing optimization approaches. To examine query execution times, resource consumption, and index statistics, use SQL profiling tools. This diagnostic process aids in identifying areas that require improvement.

3. Query Enhancement
Indexing Strategies: An essential component of query optimization is indexing. Examine various indexing techniques, such as non-clustered and clustered indexes. For quicker query execution, identify the columns that are commonly utilized in JOIN conditions or WHERE clauses and think about indexing them.

Indexing Strategies, for instance:

-- Creating a Non-Clustered Index
CREATE INDEX IX_Employee_LastName
ON Employee (LastName);

-- Query using the index
SELECT * FROM Employee WHERE LastName = 'Smith';

Rewriting Complex Queries: Assess and rework intricate queries to increase their effectiveness. JOIN optimizations, subquery removal, and appropriate index usage are a few strategies that can help speed up query processing.

4. Considerations for Database Design

  • Normalization: Aim for the best possible level of normalization for your database. Optimized normalized databases frequently yield higher performance. Finding a balance is necessary though, since over-normalization can also cause problems with performance.
  • Partitioning: Take into account dividing up data in large tables according to particular standards, like important values or date ranges. This can minimize the quantity of data that needs to be scanned, which can greatly improve query performance.
    Imagine you have a large Sales table with most queries including data from a given set of dates. Queries can target certain divisions in the table by partitioning it according to the transaction date, which facilitates quicker and more effective data retrieval.
-- Creating a Partition Function
CREATE PARTITION FUNCTION Pf_EmployeeByDate (DATE)
AS RANGE RIGHT FOR VALUES ('2022-01-01', '2023-01-01', '2024-01-01');

-- Creating a Partition Scheme
CREATE PARTITION SCHEME Ps_EmployeeByDate
AS PARTITION Pf_EmployeeByDate ALL TO ([PRIMARY]);

Monitoring and upkeep of performance
  • Frequent Index Maintenance: Fragmentation of indexes over time might affect query performance. Plan on performing routine index maintenance actions to rebuild or rearrange indexes and maintain the best possible state for the database. Indexes may fragment over time as new data is added, changed, and removed. Rebuilding or rearranging indexes on a regular basis contributes to maintaining optimal query performance.
-- Reorganizing Indexes
ALTER INDEX IX_Employee_LastName ON Employee REORGANIZE;

-- Rebuilding Indexes
ALTER INDEX IX_Employee_LastName ON Employee REBUILD;

Query Execution Plans: To find areas that need improvement, analyze and comprehend query execution plans. Utilize software such as SQL Server Management Studio to enhance and illustrate the execution strategy for intricate queries.

6. Methods of Caching
  • Query Result Caching: Use caching techniques for queries that are run frequently and are generally static. By providing cached results when appropriate, this lessens the strain on the database and speeds up response times.
  • Application-Level Caching: To store and retrieve frequently requested data without accessing the database, use application-level caching. This is especially useful for applications that require a lot of reading.
7. Hardware and Resource Efficiency
Optimize server configuration parameters, including disk I/O, parallelism, and memory allocation. Adapt these values to the device specifications and workload.
-- Configuring Maximum Degree of Parallelism (MAXDOP)
sp_configure 'max degree of parallelism', 4;
RECONFIGURE;

Storage Optimization: To improve disk I/O speed, think about using fast storage options like SSDs. To enable parallel access, split up database files among several disks.

8. Frequent Evaluation of Performance

Load Testing: To mimic high traffic situations and spot possible performance bottlenecks, do routine load tests. This proactive strategy enables changes to be made before problems affect end users.

Conclusion

Proactive maintenance, intelligent database architecture, and query optimization are all necessary for maintaining optimal SQL performance. Developers can improve the performance and user experience of their applications by putting the techniques in this tutorial to work to make their SQL databases more efficient. Remember that different database systems could have different optimization strategies, so adjust your strategy according to the SQL platform you're using.

HostForLIFEASP.NET SQL Server 2022 Hosting



About HostForLIFE

HostForLIFE is European Windows Hosting Provider which focuses on Windows Platform only. We deliver on-demand hosting solutions including Shared hosting, Reseller Hosting, Cloud Hosting, Dedicated Servers, and IT as a Service for companies of all sizes.

We have offered the latest Windows 2019 Hosting, ASP.NET 5 Hosting, ASP.NET MVC 6 Hosting and SQL 2019 Hosting.


Month List

Tag cloud

Sign in